Necessary and sufficient conditions for uniform stability of Volterra integro-dynamic equations using new resolvent equation
نویسندگان
چکیده
We consider the system of Volterra integro-dynamic equations x(t) = A(t)x(t) + ∫ t t0 B(t, s)x(s)∆s and obtain necessary and sufficient conditions for the uniform stability of the zero solution employing the resolvent equation coupled with the variation of parameters formula. The resolvent equation that we use for the study of stability will have to be developed since it is unknown for time scales. At the end of the paper, we furnish an example in which we deploy an appropriate Lyapunov functional. In addition to generalization, the results of this paper provides improvements for its counterparts in integro-differential and integro-difference equations which are the most important particular cases of our equation.
منابع مشابه
Qualitative aspects of a Volterra integro-dynamic system on time scales
This paper deals with the resolvent, asymptotic stability and boundedness of the solution of time-varying Volterra integro-dynamic system on time scales in which the coefficient matrix is not necessarily stable. We generalize to a time scale some known properties about asymptotic behavior and boundedness from the continuous case. Some new results for the discrete case are obtained.
متن کاملA new approach for solving fuzzy linear Volterra integro-differential equations
In this paper, a fuzzy numerical procedure for solving fuzzy linear Volterra integro-differential equations of the second kind under strong generalized differentiability is designed. Unlike the existing numerical methods, we do not replace the original fuzzy equation by a $2times 2$ system ofcrisp equations, that is the main difference between our method and other numerical methods.Error ana...
متن کاملNumerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary conditions
The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions. The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation. Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method. Numerical tests for demo...
متن کاملDynamic Behaviors of an Almost Periodic Volterra Integro Dynamic Equation on Time Scales
This paper is concerned with an almost periodic Volterra integro dynamic equation on time scales. Based on the theory of calculus on time scales, by using differential inequality theory and constructing a suitable Lyapunov functional, sufficient conditions which guarantee the permanence and the global attractivity of the system are obtained. Then, by using the properties of almost periodic func...
متن کاملSome New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations
This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...
متن کامل